Creating Methods that Require a Single Argument

Argument: Information a method needs to complete its task.

If you want to design a method to square a number, it makes sense to design the method so that you can supply the number to be squared.

When you declare the method that can receive an argument, such as the number to be squared, you need to include within the method ()

· The type of argument

· A local name for the argument

· It can be a variable or constant

Example:

public void predictRaise(double MoneyAmount)

or

public void predictRaise(472.25)

It is a void method because it doesn’t return any value to the class that uses it.

Here’s an example of a class that requires a single argument:

Public class DemoRaise

 {

 public static void main(String[] args)

 {

double mySalary = 200.00;

System.out.println(“Demonstrating some r

aises: “);

predictRaise(400.00);

predictRiase(mySalary);

 }

 public static void predictRaise(double moneyAmount)

 {

double newAmount;

newAmount = moneyAmount * 1.10;

System.out.println(“With raise salary is “ + newAmount”);

 }

}

Creating Methods with Multiple Arguments:
Separate arguments by commas in the ()

When you send arguments to a method, they must match in terms of number and type

For example: A method to compute an automobile salesperson’s commission amount might require arguments such as an integer value of a car sold, a double percentage commission rate, and a character code for the vehicle tyupe. The correct method will execute only when the 3 arguments

Public static void predictRaiseGivenIncrease(double moneyAmount, double percentRate)

Here’s an example of this method:

Public static void predictRaiseGivenIncrease(double moneyAmount, double percentRate)

 {

double newAmount;

newAmount = moneyAmount * (1 + percentRate);

System,out.println(“With raise salary is “ + newAmount);

 }

